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Flicker perception was investigated using two-alternative forced-choice detection and discrimination tasks with four different
types of external noise: (1) broadband noise, (2) 5-Hz notched-noiseVbroadband noise with a 5-Hz band centered on the
signal frequency removed, (3) 10-Hz notched-noise, and (4) no external noise. The signal was a burst of 10-Hz sinusoidal
flicker presented in one of two observation intervals. In discrimination experiments, a pedestalVsinusoidal flicker with the
same frequency, duration, and phase as the signalVwas added to both observation intervals. With no noise, observers’
performance first improved with increasing pedestal modulation, before deteriorating in accordance with Weber’s Law,
producing the typical “dipper” shaped plot of signal versus pedestal modulation. Noise affects performance, but the dipper
effect persisted in each type of noise. The results exclude three models: the ideal-observer in which the pedestal improves
performance by specifying the signal exactly; off-frequency-looking models in which the dipper depends on detection by
channels tuned to temporal frequencies different from that of the signal; and strict energy detectors. Our data are consistent
with signal processing by a single mechanism with an expansive non-linearity for near-threshold signal modulations (with an
exponent of six) and a compressive “Weberian” non-linearity for high modulations.
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Introduction

Under certain conditions, the ability of a human observer
to discriminate correctly which of two observation intervals
contains a signal (sometimes called the target) can be
improved by adding copies of the signal (usually called
pedestals) to both intervals. This effect, known as the pedestal
or dipper effect, runs counter tomodels inwhich the difference
signal required for discrimination increases monotonically
with background level as, for example, predicted by Weber’s
law, according to which the signal increases in proportion to
the background level, or by the DeVries-Rose square-root
law, according to which it increases in proportion to the
square-root of the background level.
The dipper effect is typically obtained in experiments in

which the spatial and temporal properties of the signal and
pedestal are matched in frequency, phase and orientation.
The threshold-versus-contrast (TvC) function (in which the
contrast [or modulation] of the signal corresponding to
some percentage of correct responses is plotted against

the pedestal contrast) exhibits a characteristic “dipper”
appearanceVas pedestal contrast increases from zero, per-
formance first improves, and then deteriorates at higher
pedestal levels (see, for example, Figure 1, below).
The earliest reports of the pedestal effect were for the

discrimination of a flashed, uniform target superimposed
on one of two spatially-separated flashed pedestals of the
same size and duration (e.g., Barlow, 1962a, 1962b;
Cornsweet & Pinsker, 1965; Whittle & Swanston, 1974),
or for the discrimination of a grating presented on one of
two temporally-separated gratings of the same spatial fre-
quency and orientation (Campbell & Kulikowski, 1966).
The pedestal effect has received considerable attention

in sensory research where it has been used as a means of
investigating the suprathreshold properties of visual
mechanisms. It has been used extensively in the spatial
domain to investigate the response characteristics of
channels or mechanisms that are differentially sensitive
to spatial frequency and orientation (e.g., Bird, Henning,
& Wichmann, 2002; Foley & Legge, 1981; Henning &
Wichmann, 2007; Legge & Foley, 1981; Nachmias &
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Sansbury, 1974; Wichmann, 1999; Yang & Makous, 1995).
But it has also been used to investigate the properties of,
for example, color and luminance mechanisms (e.g.,
Chen, Foley, & Brainard, 2000; Cole, Stromeyer, &
Kronauer, 1990; Mullen & Losada, 1994; Switkes, Bradley,
& De Valois, 1988); and ON- and OFF-channels (e.g.,
Bowen, 1995). The effect has also been reported with
flickering or drifting gratings (e.g., Anderson & Vingrys,
2001; Boynton & Foley, 1999; Stromeyer, Kronauer, &
Madsen, 1984) andwith uniform flickering targets (Anderson
& Vingrys, 2000; Stockman & MacLeod, 1985).
Here, we use the pedestal effect in the temporal domain

to investigate the response characteristics of mechanisms
sensitive to temporal frequency.
So, by what mechanisms might increasing the pedestal

contrast in both intervals improve performance? A number
of more or less plausible explanations of the pedestal effect
have been proposed (see Solomon, 2009 for recent review).
Broadly speaking, they can be put into four categories:

(1) The effect is the result of a specific nonlinear
transducer function (e.g., Foley & Legge, 1981;
Legge & Foley, 1981; Nachmias & Sansbury,
1974), such that the early part of the function is
accelerating and the later part decelerating. The
accelerating portion generates the dipper, because
the difference in output between signal-plus-pedestal
and the pedestal alone is larger than the difference in
output between the signal alone and no signal, while
the decelerating portion produces Weber’s Law by
compression. In some versions, the deceleration is
produced by a divisive gain control (e.g., Boynton &
Foley, 1999; Foley, 1994).

(2) The effect is due to a specific nonlinear transducer
function combined with a signal-dependent internal
noise (e.g., Green, 1967; Kontsevich, Chen, &
Tyler, 2002), such that the accelerating nonlinearity
produces the dipper at low pedestal levels, while
the noise produces Weber’s Law at high levels.

In both categories (1) and (2), the pedestal effect is
assumed to be a characteristic of a single mechanism.

(3) Perhaps the most radical proposal is that the effect,
in spatial vision at least, is due not to the
characteristics of a single mechanism but to the
pooled characteristics of many mechanisms with
non-linear transducer functions that are insufficient
in themselves to produce substantial dippers. The
dipper is assumed to be produced by the recruit-
ment of mechanisms that are mistuned away from
the signal and pedestal as the pedestal contrast
first increases (Goris, Wichmann, & Henning,
2009; Henning & Wichmann, 2007). We refer to
these models as the “off-frequency-looking” model.

(4) Another, now somewhat discredited proposal (e.g.,
Bowen, 1995; Yang & Makous, 1995), is that the

pedestal, because it is a copy of the test, reduces
uncertainty about the frequency, phase, timing, and
location of the signal thereby producing improved
performance and the dipper (Pelli, 1985).

Here we use a similar strategy to Henning and
Wichmann (2007) to evaluate these models, but applied
in the temporal rather than spatial domain. We measured
thresholds for detecting Hanning-windowed bursts of
10-Hz sinusoidal flicker in one of two temporal intervals
containing pedestals of the same temporal frequency, phase
and duration as a function of pedestal contrast (i.e., TvC
functions). Measurements were made under four conditions
of external noise: 1) broadband noise, 2) 5-Hz “notched”
noiseVthe same broadband noise from which a 5-Hz band
of noise centered arithmetically on the signal frequency
had been removed, 3) 10-Hz notched noise and 4) no
external noise. Comparisons among the no-noise and noise
conditions, allow us to evaluate the different models
proposed to account for the dipper effect. If off-frequency
looking is important in producing the dipper, then the
use of notched-noise should minimize the contributions
of off-frequency channels and thus destroy the dipper
(as Henning and Wichmann (2007) found in the spatial
domain). If, on the other hand, uncertainty reduction is
important, then, for an ideal observer (for whom the
pedestal defines the signal frequency precisely), changing
the notch width of the noise should not affect the
observer’s performance when the pedestal is present.
Because the dipper persists in notched temporal noise,

and because performance depends on the notch width, our
results are inconsistent both with off-frequency looking in
the temporal domain and with uncertainty reduction as
characterized by the signal-known-exactly (SKE) ideal-
observer. Instead, our data can be accounted for by
assuming a single channel with an appropriate nonlinear
transducer function. Following the early proposals of
Delboeuf (1873) and Fechner (1860), we develop a simple
nonlinear transducer function that describes our entire
data set. The development of this model is described in
the final section of the paper. This modeling suggests that
the dipper effect cannot be characterized by a simple energy
detector. Instead, the required transducer has a steeply-
rising threshold non-linearity with an exponent of about
six (i.e. three times that of a simple energy detector).

Methods

Subjects

Two males (aged 50 and 64) and one female (aged 30)
participated in this study. The study conforms to the
standards set by the Declaration of Helsinki, and the
procedures were approved by local ethics committees at
University College London.
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Procedure

We used a two-interval forced-choice task. On each
trial, noise and pedestals (if used) were both presented in
two 1-second long observation intervals separated by a
500-millisecond pause. The signal was added to one of the
observation intervals of each trial. The interval that con-
tained the signal was randomly selected, so that the signal
was equally likely to be in the first or second interval.
Following the second observation interval, there was a
1.5<second response interval during which the observers
indicated, by pressing keys, which interval they thought
had contained the signal. Auditory signals indicated the
beginning of each observation interval and the start of the
response interval. Feedback was provided by a fourth au-
ditory signal that indicated which observation interval had
contained the signal. Psychometric functions of at least
five points of 100 observations eachwere obtained in blocked
sessions relating the percentage of correct responses to the
amplitude of the signal for each pedestal level and notch
width. These measurements were obtained in four con-
ditions of external noise: 1) no noise; 2) broadband noise,
3) 5-Hz “notched” noise, 4) 10-Hz notched noise. The
order of sessions was counterbalanced within observers.

Apparatus

Flickering stimuli were presented on an LED-based
photo-stimulator that allows fine control of the luminance
of bright uniform fields up to high temporal frequencies
(Pokorny, Smithson, & Quinlan, 2004; Puts, Pokorny,
Quinlan, & Glennie, 2005). The output of the LEDs was
controlled via an M-Audio soundcard, housed in a G3
Macintosh computer. A circular test field, comprised of
light from four LEDs (with peak outputs at 460, 516, 558,
and 660 nm), had an annular surround, comprised of light
from a second set of four LEDs with peak outputs at the
same wavelengths. The test field subtended 2 degrees of
visual angle and the annular surround subtended 8 degrees.
To minimize the contrast at the border between the central
and surround fields, each of the surround LEDs in turn was
perceptually matched to the center LED having the same
wavelength composition. The relative levels of the four
central LEDs were chosen such that the fields were
metamers of the equal-energy spectrum, and appeared
approximately achromatic. In this study, the luminances
of the surround LEDs were held constant, and the four
LEDs illuminating the central test field were modulated
in-phase to produce variations in luminance. The mean
luminance of both the surround and the central field was
30 cd/m2, which was sufficient to guarantee rod saturation.

Specification of stimuli

The LED spectra were measured with a telescopic
spectroradiometer (Gamma Scientific, San Diego, CA)

and used in conjunction with estimated cone sensitivities
(Stockman & Sharpe, 2000) to calculate the ratio of the
outputs of the component LEDs required to produce a
light metameric to equal energy white. The relation
between the intensities specified by the program and those
produced by the diodes was established with a radiometer
(UDT Instruments, Orlando, FL). A linearizing look-up
table was then created to generate a mapping from the
level requested in software to the luminance output of
each LED. The system calibrated in this way should
allow accurate luminance modulations with a resolution
of 16.5 bits per channel up to about 100 Hz (Puts et al.,
2005). The temporal waveforms were generated digitally
and loaded to a buffer (wavetable) using the CoreAudio
commands in Mac OS X.
Each stimulus had a duration of 1 second, which corre-

sponded to 44100 samples at the sampling rate of the
soundcard. All temporal waveforms were first generated
in software using MATLAB. The 10-Hz signals and
pedestals were generated as simple sinusoidal waveforms.
The noise waveforms were defined as linear combinations
of sinusoids from a set whose frequencies were equally
spaced at 1 Hz intervals up to 100 Hz. At each frequency,
the amplitudes of both sine- and cosine-phase sinusoids
were randomly selected from a Gaussian distribution of
zero mean and fixed variance. Broadband noise of this sort
is sometimes called Fourier-series band-limited white
Gaussian noise. The variance of the Gaussian distribution
is proportional to the mean noise-power density of the
noise and we describe below how we chose the appro-
priate variance. Notched noise was produced by removing
either a 10- or 5-Hz band of components from a region
centered arithmetically on the 10-Hz signal and pedestal
frequency. The signals, in the frequency domain, were
then transformed to the time domain.
We generated 100 noises in each noise class (meeting

the criteria set out below). The noises were stored and, for
each observation interval of our two-alternative forced-
choice task, we randomly chose a noise from the appro-
priate class, each member of which was equally likely to be
chosen. The waveform that was displayed was constructed
by summing the appropriate signal, pedestal, and noise
waveforms, multiplying the resultant waveform by a raised
cosine (Hanning) window, rounding, and integerizing the
windowed stimulus. The signal and pedestal were always
in phase and in cosine phase with the peak of the window.

Calibration

To check the characteristics of the stimuli, a nominally
sinusoidally flickering luminance was produced by the
diodes and examined with the photometer. The photo-
meter produced an electrical signal that followed the
luminance input without loss up to about 100 Hz. We
examined the harmonic content of a 10-Hz (nominally)
sinusoidal flicker by sending the electrical output of the
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photometer through a wave analyzer (HP 35080A). This
established that the stimulus was effectively sinusoidal
since its second and third harmonic distortion products
were negligible.
The photometer and the wave analyzer were also used

to establish the characteristics of the flickering Gaussian
noise. One-second long examples of the broadband noises and
of the 10-Hz notched noises were generated in MATLAB,
rounded, integerized, displayed as repeating luminance
waveforms through the diodes, and observed at the wave
analyzer as the electrical signals from the photometer.
We chose the appropriate variance for the generation of

the Gaussian noise by considering two related criteria:
First we inspected the output from the diodes in response
to broadband noise and increased the variance until the
waveform was only very occasionally limited (clipped) by
the maximum or minimum output; second, with the
chosen value of the variance, we looked at the frequency
spectrum of the notched noise using the wave analyzer.
Notch depth is adversely affected either by excessive
clipping (produced by too large a variance) or by insuf-
ficient dynamic range in the numerical representation prior
to digital-to-analogue conversion (produced by too small a
variance). For each noise sample we used, we confirmed
that our 10-Hz notch had a stop-band in which the noise-
power density was at least 35 dB below the noise-power
density in the pass-band. A similar analysis of the 5-Hz
notches was precluded by the finite bandwidth (1-Hz at
half-power) of the narrowest filter in the wave analyzer.
The mean root-mean-squared (r.m.s.) contrast of the 100
broadband noise samples used was 0.198, with a standard
deviation of 0.008.

Results

Data obtained in the absence of external
noise

The psychometric functions relating the percentage of
correct responses to the logarithm of the depth of signal
modulation were fit with Gumbel functions using the
maximum-likelihood procedure of Wichmann and Hill
(2001a, 2001b). Estimates of the modulation depths
corresponding to 60%, 75%, and 90% correct responses,
together with estimates of the variability associated with
each estimate, were determined from these fits.
Figure 1 presents conventional threshold vs. pedestal

functions, called threshold vs. contrast plots or TvC plots.
Each panel shows, for a different observer, the signal
modulation (or ripple ratio) corresponding to three different
performance levelsV90% correct (red triangles), 75%
correct (green circles), and 60% correct (blue squares)V
each as a function of the pedestal modulation; no external
masking noise was used. Where larger than the data points,

vertical lines indicate approximately T1 standard deviation.
The results are broadly similar for the three observers, and
the pattern of results is roughly similar across the different
performance levels: the signal modulations corresponding
to contours of constant performanceVwhich we refer to
loosely as “thresholds”Vfirst fall as the pedestal modu-
lation increases from zero, and reach minima that are well
below the “threshold” modulation depth obtained with no

Figure 1. Data from the no-noise condition. Signal modulations
corresponding to performance levels of 90% (red triangles), 75%
(green circles), and 60% correct (blue squares) plotted as a
function of the pedestal modulation. For each observer, the
contours of constant performance were derived from Gumbell fits
to the underlying psychometric functions at each pedestal level,
based on at least five points, each of 100 observations (Wichmann
& Hill, 2001a, 2001b). The logarithmic thresholds and their error
estimates were converted to linear scales. The leftmost points
were obtained with no pedestal. Vertical lines indicate T1 standard
deviation derived from the maximum likelihood fits to the
psychometric functions. Observers: GBH (a), HES (b) and AS (c).
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pedestal, before rising again. The minima are located at
pedestal modulations just above the “threshold” modulations
obtained with no pedestal. Comparable “dipper” shapes have
been found in many other analogous experiments.
In spatial vision, the depth of the dipper and the location

of its minimum depend on performance level: the dipper
exhibited for low performance levels is deeper and occurs
at higher pedestal levels than the dipper exhibited for
higher performance levels (Bird et al., 2002; Goris,
Wagemans, & Wichman, 2008; Wichmann, 1999). Sim-
ilarly, for flicker, we find that the maximum improvement
with added pedestal modulation is greater at lower than at
higher performance levels and tends to occur at slightly
higher pedestal modulations. The change in shape with
performance level reflects the slopes of the underlying
psychometric functions relating percentage correct to the
logarithm of signal modulation, which are steepest at low
pedestal levels, where the performance level contours are
closely spaced, and most shallow in the vicinity of the dip,
where the performance contours are most widely separated.
The performance contours become more closely spaced
once again on the rising portions of the TvC curves where
the pedestals mask the discrimination of the signal roughly
in accordance with Weber’s Law.

Data obtained with external noise added

We next consider the same detection and discrimination
experiment performed in the presence of the three types of
noise: 1) broadband, white Gaussian noise, 2) 5-Hz
notched noiseVthe same broadband noise from which a
5-Hz band of noise arithmetically centered on the signal
frequency had been removed, and 3) 10-Hz notched noise.
The three panels of Figure 2 show, separately for each

observer, the 75% performance contours in the same
format as Figure 1Vthe signal modulation producing 75%
correct as a function of pedestal modulation. The black
symbols are from the broadband-noise condition, the dark
gray symbols from the 5-Hz-notch condition, the light gray
symbols from the 10-Hz-notch condition, and the open
symbols, from Figure 1, are from the no-noise condition.
Error bars indicate approximately T1 standard deviation.
For all three observers the results vary systematically with
the noise masking condition. Two changes are apparent
with increasing notch width. First, the performance for the
detection of the signal alone (i.e., the leftmost points in
Figure 2) improves. Second, the region of masking by the
suprathreshold pedestals begins at lower pedestal levelsV
and the pedestal value at which the best performance
occurs decreases slightlyVas notch width increases.
In Figure 3, we present the 60%, 75% and 90%

performance contours for all conditions of the experiment.
The three columns of plots show data for GBH (left), HES
(middle) and AS (right). Plots in the top row show the
results obtained with no external noise, and subsequent
rows show data obtained with notched-noise maskers with

a 10-Hz notch, notched-noise maskers with a 5-Hz notch
and broadband noise maskers. Each plot compares data for
the three performance levels: 60% contours (blue squares),
75% contours (green circles), and 90% contours (red
triangles). The solid lines through the data points show
the best-fitting predictions of a model simulation described
in the section “Development of a non-linear transducer
model”.

Figure 2. Signal modulations corresponding to 75% correct
performance plotted as a function of pedestal modulation. Four
different masking conditions are shown: data obtained with
broadband white Gaussian noise (black circles), broadband noise
from which a 5-Hz notch arithmetically centered on the signal
frequency was removed (dark gray circles), broadband noise with a
10-Hz notch centered on the signal frequency (light gray circles),
and with no noise (open circles, from Figure 1). Error bars were
derived in a sameway as for Figure 1. Observers: GBH (a), HES (b)
and AS (c).
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There is considerable variability among the observers,
but many of the differences are due simply to differences
in the observers’ sensitivities. There are also several
features of the data that are common to all three observers.

Associated with the improvement in performance level
with increasing notch width for the detection of the signal
alone (leftmost points), there is an accompanying decrease
in the separation between the performance contours

Figure 3. Data from four different masking conditions: no-noise (top row), broadband noise with a 10-Hz notch centered on the signal
frequency (second row), broadband noise with a 5-Hz notch centered on the signal frequency (third row), and broadband white Gaussian
noise (bottom row), for three observers: GBH, HES, AS. In each panel, signal modulations corresponding to performance levels of 90%
(red triangles), 75% (green circles), and 60% correct (blue squares) are plotted as a function of the pedestal modulation. Smooth lines
through the data are the best fitting curves from the non-linear transducer model of Equation 12. Details of simulation and fitting are
provided in the text.
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defined by the data. Thus, increasing notch width causes
the underlying psychometric functions to become steeper.
One failure of our model predictions (shown by the
continuous lines in Figure 3, and described later) is that
the predicted contours at the detection threshold are
approximately equally separated across the three noise
conditions. As we discuss below, the changes we observe
are also inconsistent with the uncertainty model. As in
Figure 2 for the 75% contour, the contours at 60% and
90% also show that the extent of masking decreases with
notch width, but that the facilitationVthe dipperVpersists
across all conditions.
The characteristics of the contours at different perfor-

mance levels apparent in the absence of external noise
shown in Figure 1 are preserved in the presence of
external noise: The size of the dipper depends on
performance level, with the smallest improvement for
the 90% performance contour and greatest improvement
for the 60% contour. For GBH the dipper occurs close to,
or slightly above, the detection threshold for the signal
alone. This pattern is repeated for HES and AS, although
the data are sometimes too noisy to locate the minima
precisely. In general, in external noise conditions, the
location of the dipper shifts to higher pedestal modu-
lations compared to the location of the dipper in the
absence of external noise.

“Threshold” signal modulation
as a function of the combined strength of
signal and pedestal

Some insight into the results can be obtained by plotting
the signal modulation corresponding to some performance
level against the combination of that signal modulation and
the pedestal modulation (the modulations simply add in the
combination because they are of the same frequency and
phase). From the point of view of an observer, the task is
either a detection or discrimination task, depending on the
strength of the pedestal modulation. At low pedestal levels
the task seems to the observer to be a detection task
because the pedestal alone is never seen, whereas at high
pedestal levels it seems to be a discrimination taskVwith
the pedestal modulation alone in one interval and the
signal-plus-pedestal modulation in the other.
Figure 4 shows the data for GBH from Figure 1 (no-

noise condition) re-plotted with signal modulation as a
function of signal-plus-pedestal modulation. In the top
panel the signal modulation corresponds to 60% correct
responses, in the center panel, to 75% correct, and in the
bottom panel, to 90% correct. The extended vertical lines
(in blue) toward the left in each panel mark the 95%
confidence interval around the signal modulation required
to achieve that performance level in detecting the signal
alone (i.e., with zero pedestal modulation). The approximate
confidence intervals were obtained from the bootstrap

Figure 4. Data obtained in the no-noise condition (from Figure 1)
for observer GBH plotted against different co-ordinates: each
panel shows signal modulation as a function of signal-plus-
pedestal modulation for 60% (a), 75% (b) and 90% (c) correct
responses. The extended blue vertical lines in each panel mark
the 95% confidence interval about the signal modulation required
to achieve the appropriate performance level with zero pedestal
modulation. The filled symbol in each panel marks the data point
where the pedestal modulation alone is close to the 60%
“threshold” and the partially filled symbol marks the data point
where the pedestal alone is close to the 90% threshold. The red
diagonal lines show the best (least squares) linear fit to the
rightmost four points in each panel.
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procedure of Wichmann and Hill (2001a, 2001b). The red
diagonal lines are the best (least squares) fits to the
rightmost four points in each panel.
These graphs have several notable features. First, at low

pedestal levels, the signal is discriminated when the
signal-plus-pedestal modulation reaches the level at which
modulation can be detected in the absence of the pedestal.
For these pedestals of low modulation depth, the task is
essentially a detection task; the pedestal alone is very
rarely seen and the only interval with recognizable
sinusoidal modulation comprises the pedestal modulation
added to the signal modulation. The pedestal effect is
produced because, in this region (i.e., for pedestal levels
approaching the bottom of the dipper in Figure 1), it is the
sum of the pedestal and signal modulation that produces
the “threshold” stimulus; the signal modulation needed to
reach the “threshold” decreases as the pedestal modulation
increases and thus appears as the pedestal or dipper effect.
This seems to be the case for all three performance
thresholds.
Second, a narrow transition region begins at the point at

which the modulation of the pedestal alone begins to be
“seen”. This transition region is delimited in each panel by
the large and small filled symbols, which mark the
approximate points on each curve at which the modulation
of the pedestal reaches levels at which the pedestal alone
should be detected with performance levels of 60% and
90%, respectively. In the transition region, the perfor-
mance results from a mixture of detection-like trials, in
which flicker with the temporal and spatial characteristics
of the signal is seen in only one observation interval, and
discrimination-like trials in which that flicker is seen in
both intervals and the interval containing the more
pronounced flicker (or flicker more like that of the signal)
is chosen as having contained the signal. This region in
Figure 4 is very small and corresponds, in effect, to the
width of the psychometric function relating the percentage
of correct responses to the depth of signal modulation in
the absence of a pedestal.
Lastly, at higher pedestal levels, the signal modulation

corresponding to a given performance level is propor-
tional to the sum of signal and pedestal modulations. The
red diagonal lines fitted to the upper three or four
discrimination thresholds show the best (least squares)
linear fit to the data in that region. The fitted function is of
the form:

$M ¼ mð$M þMÞ þ c; ð1Þ
where M is the pedestal modulation, $M is the added
signal modulation, m is the slope and c the intercept. All
three observers produce results of the form of Figure 4 in
the condition with no external noise. In all cases, the
intercepts, c, are close to zero. The largest 95% confidence
interval for the intercept,j0.030 to 0.029, was for the 90%
performance contour for observer HES; all the remaining
confidence intervals were within 0.01 of zero. This result

is important, because it implies that in the regions in
which performance can be described by Equation 1 it is
governed, as in many discrimination tasks, by something
like Weber’s law; and it also means that the Weber
fraction, $M/M, can be extracted from the slopes of the
linear fits. Rearranging Equation 1 with c = 0 gives:

$M=M ¼ m=ð1jmÞ: ð2Þ

This is, of course, not a general finding, since not all
contrast discrimination conforms to Weber’s Law.
In Table 1, we summarize the fits of Equation 1 by

tabulating the Weber fractions calculated using Equation 2
and the intercepts. The Weber fractions for modulation
discrimination when the signal and pedestal have the same
frequency and are in-phase correspond to the ratio of the
signal modulation (at some “threshold” performance level)
to the pedestal modulation. The average Weber fractions
across the three observers are: 0.102, 0.177, and 0.247 for
the 60%, 75%, and 90% performance contours, respectively.
For the conditions with noise, plots of the form of

Figure 4 show similar characteristics to those obtained
without noise. For example, data obtained for HES in the
broadband noise condition are shown in Figure 5. In
general, the interpretation of these plots for the conditions
with external noise is slightly more difficult for two
reasons: First the external noise introduces more varia-
bility (evident in the increased widths of the vertical
blue lines giving the 95% confidence intervals for the
“thresholds” with zero pedestal levels), and second, the
noise requires higher signal levels with the consequence
that equipment constraints often preclude achieving high
enough pedestal levels to ensure that only data on the
rising part of the curve are included in the straight-line fit.

Observer %
Weber
Fraction % “Intercept”

GBH 60 0.091 60 j.00155
75 0.139 75 .00101
90 0.176 90 .00696

HES 60 0.089 60 .00007
75 0.208 75 j.00077
90 0.348 90 j.00089

AS 60 0.127 60 j.00414
75 0.183 75 j.00161
90 0.218 90 .00604

Average 60 0.102 60 j.00187
75 0.177 75 j.00046
90 0.247 90 .00403

Table 1. Weber fractions obtained at high pedestal levels
corresponding to the percentage correct obtained in the no-noise
condition and the corresponding intercepts of the least-squares
linear fit to the rising sections of plots like those in Figure 4 for
each observer and the average observer.
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[Many disputes over the slope of the rising parts of TvC
curves in spatial vision arise because of this problem
(Wichmann, 1999)]. In the case of broadband noise, for
example, only two of our observers (GBH and HES) appear
to have three points on the rising part of their graphs. The
best fitting lines again have intercepts close to zero and the
average Weber fractions for these two observers are: 0.051,
0.096 and 0.149 for the 60%, 75% and 90% performance
contours, respectively. That these values are smaller than
those obtained in the no-noise condition could well be
simply a result of our inability to generate pedestal levels
that were high enough to get our observers into the linear
range of the rising part of the graphs. One further effect in
the broadband noise data for GBH and AS is a slight
tendency for performance to improve beyond the transition
region. This is also the case in spatial vision.

Of course, although instructive, the graphical represen-
tations in Figures 4 and 5 are essentially alternative
representations of the TvC plots shown in the earlier
figures. The vertical fall of $M with $M + M at low
pedestal modulations is equivalent to a slope of j1 in the
logarithmic TvC plots, whereas the linear growth of $M
with $M + M with zero intercept at high pedestal
modulations is equivalent to a slope of +1 in the loga-
rithmic TvC plots. Neither graphical representation
explains the data; any model that fits the underlying
psychometric functions must have the characteristics of
the data in both types of figure.
We now turn to explanatory models.

Discussion

The motivation behind these experiments was to further
investigate the properties of the mechanisms that underlie
flicker perception. Our approach has been to measure TvC
functions under different conditions of external noise.
These results enable us to do two things: first, to exclude
some existing models of the pedestal effect based on off-
frequency looking in the temporal domain and uncertainty
reduction as characterized by the SKE ideal-observer; and,
second, to develop a specific non-linear transducer model
that can account for the entirety of our data. In this
section, we discuss existing models.

Off-frequency looking models

The term off-frequency looking has been used to
describe situations in which channels tuned to frequencies
different from the signal frequency contribute to perfor-
mance. In a recent study using spatially-varying stimuli
and noise, Henning and Wichmann (2007) found that the
dipper effect disappeared in notched broadband masking
noise. They interpreted this as evidence that the pedestal
effect results not from the characteristics of an individual
spatio-temporal channel or mechanism, but rather from
the way in which information is combined across diversely-
tuned channels; i.e., observers rely on off-frequency
looking in the region of the dipper (but see also Goris
et al., 2009). However, contrary to these findings, we find
that with temporally-varying stimuli the dipper effect
survives in notched masking noiseVa result that is
inconsistent with models in which observers use informa-
tion from channels tuned to different temporal frequencies.
Our results could be taken to imply that the activity of

multiple mechanisms is not a necessary condition for the
generation of the dipper, in which case they would pose a
problem for off-frequency looking models, in general.
However, off-frequency looking across spatial-frequency

Figure 5. Data obtained in the broadband noise condition (from
Figure 3) for observer HES plotted in the same format as Figure 4.
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channels cannot be excluded by the results of our
experiment.
The off-frequency looking model in spatial vision can

be preserved by supposing that there is something
fundamentally different between channels sensitive to
temporal frequency and those sensitive to spatial fre-
quency. One well-known difference is that there are fewer
temporal frequency channels than spatial ones. Most
estimates suggest two, or possibly three, flicker mecha-
nisms (Boynton & Foley, 1999; Hess & Snowden, 1992;
Levinson, 1960; Mandler & Makous, 1984; Roufs, 1974;
Watson, 1986). By contrast, there are likely to be many
spatial frequency channels (Blakemore & Campbell,
1969; Campbell & Robson, 1968; De Valois & De Valois,
1988; Graham & Nachmias, 1971; Henning, 1988;
Henning, Hertz, & Hinton, 1981). Differences in channel
numerosity alone, however, cannot explain why individual
temporal frequency channels can sustain the full dipper
effect, but individual spatial-frequency channels cannot.
One possibility is that the temporal frequency channels
have different underlying transducer functions, perhaps
with a harder threshold nonlinearity, and perhaps medi-
ated or limited by mechanisms earlier in the visual system
than the emergence of spatial frequency channels.
It is also possible that the flicker response to our

spatially-uniform flickering disc is mediated by a family
of spatio-temporal channels optimally tuned to different
(low) spatial frequencies. If the transducer functions of
these spatial-frequency sensitive channels are similar to
those tuned to the higher spatial frequencies investigated
by Henning and Wichmann (2007), then the dipper that
we find might also result from pooling across the spatial
frequency domain.

Uncertainty reduction models

TvC functions measured under different conditions of
external noise have also allowed us to evaluate explana-
tions of the dipper effect based on uncertainty reduction.
Such explanations suppose that the improvement in
performance in the presence of the pedestal results from
the pedestal improving the observer’s knowledge of the
characteristics of the signal (Burgess, 1985, 1990; Green
& Swets, 1966; Pelli, 1985).
Uncertainty reduction models of the pedestal effect are

typically assessed by comparing human performance with
that of the ideal observer for a signal-known-exactly
(SKE) (Burgess, 1985, 1990; Pelli, 1985). An ideal detec-
tion process takes advantage of full knowledge of the
signal’s waveform to filter out irrelevant frequencies and
phases. Our unfiltered noise stimuli consist of sine and
cosine components at 100 frequencies, each having iden-
tical independent Gaussian distributions of amplitude over
trials so that the stimulus on a given trial defines a point in
a 200 dimensional space. For a known signal, only one of
the 200 dimensions is relevant, and the noise components

for the other 199 dimensions can be ignored. But we show
that this does not happen.
The ideal observer can be realized by using as the

decision axis the output of a device that calculates the
cross-correlation of the input (noise alone or signal plus
noise) with a copy of the known signal (Green & Swets,
1966; van Trees, 1968). For sinusoidal signals, a cross-
correlation mechanism is sensitive to only one component
of the noiseVthat component having the same frequency
and phase as the signal. Changing the width of a notch
centered on the signal frequency has no effect on a cross-
correlation receiver’s performance and thus, if the cross-
correlator is an adequate model of human behavior,
changing notch widths should not affect human perfor-
mance which, for both our notch widths, should be the
same as having no external noise at all.
Our data, however, consistently show that performance

varies systematically with the noise-masking condition.
As described in the Results section, with increasing notch
width the performance for the detection of the signal alone
improves, and the underlying psychometric functions
become steeper. These results are inconsistent with the
behavior of the SKE ideal observer and indicate that the
mechanism detecting the flicker responds to flickering
noise of broad bandwidth rather than to a narrow band or
to a single noise component like the ideal observer for the
signal-known-exactly.
At the other extreme, if nothing is known about the

frequency and phase of the signal, no such pruning of
the stimulus space is possible; a stimulus located far from
the origin in any direction is more likely to have
originated from a signal plus noise rather than from noise
alone, so the appropriate decision axis for an unknown
signal is distance from the originVthe square root of the
sum of squares of the sine and cosine amplitudes at all
frequencies, which is monotonically related to the total
flicker energy of the stimulus. We consider the energy
detector subsequently.
Between the extremes of the SKE ideal observer and the

energy detector there are many possible forms of
uncertainty reductionVthe coarse temporal-frequency
discrimination of Mandler and Makous (1984), or the
partition into ‘agitation’ as opposed to the luminance
‘swell’ visible at lower modulation frequencies (Roufs &
Blommaert, 1981) suggest severalVbut their exploration
is beyond the scope of this paper.

Non-linear transducer models

We argue that our results are broadly consistent with
the behavior of a single mechanism characterized either
by a specific nonlinear transducer function (e.g., Foley &
Legge, 1981; Legge & Foley, 1981; Nachmias & Sansbury,
1974), or by a specific nonlinear transducer function
combined with a signal-dependent internal noise (e.g.,
Green, 1967; Kontsevich et al., 2002). In order to support
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this argument we next develop a specific non-linear
transducer function that can account for the entirety of
our data measured with and without masking noise.

Development of a non-linear
transducer model

In this section, we use our entire data set, which is
shown as symbols in Figure 3, to refine and develop a
single-mechanism non-linear transducer model. However,
rather than develop some arbitrary process, our strategy
has been to constrain the modeling by starting with
classical functions proposed by Delboeuf (1873) and
Fechner (1860). The predictions of the developed model
are shown by the continuous lines in Figure 3.

Data obtained without external noise
Fechnerian schemes for Weber’s Law

We consider first the data obtained without external
noise, the salient features of which are the approximate
adherence to Weber’s Law for large pedestal modulations,
and the deviation from Weber’s law characterized by the
‘dipper’ for near-threshold pedestal modulations.
Weber’s Law characterizes the relation between stimulus

magnitude, M (in our case, the pedestal modulation) and
the difference in magnitude, $M (in our case, the added
signal modulation) that is needed to make the combined
modulation M + $M just noticeably different from M. In
its simplest form, the Weber relation is $M = wM, where
the proportionality constant, w, is called the Weber fraction.
Fechner (1860) showed how the above form of

Weber’s Law could result from a logarithmic nonlinearity
in the sensory response: On the assumption that all just-
noticeable differences correspond to a constant difference
in a sensory response $R, where $R = $M/M, Equation 3
follows by integration:

RðMÞ ¼ logeðMÞ þ C: ð3Þ

Equivalently, with loge(MV) = jC (where MVis the value
of M for which R(M) = 0), Equation 3 becomes:

RðMÞ ¼ logeðM=MVÞ: ð4Þ

The black curve of Figure 6 shows this relationship, for
MV= 0.1, with M on a linear scale in the upper panel and
on a logarithmic scale in the lower panel. Now $R, the
difference in R corresponding to a just noticeable stimulus

difference $M = wM, is always loge(1 + w), independent
of M, as shown in the derivation of Equation 5:

RðM þ $MÞ ¼ R½ð1þ wÞM�;
¼ loge½ð1þ wÞM=MV�
¼ RðMÞ þ logeð1þ wÞ:

ð5Þ

Fechner did not provide a statistical account of Weber’s
Law applicable to forced-choice measures of discrimina-
bility. But if we make the standard assumption that, on

Figure 6. Response output (R) predicted as a function of mod-
ulation input (M) for various input-output schemes. Fechner’s
(1860) logarithmic input-output nonlinearity, which is given by
R = loge(M/M V)Vsee Equation 4Vis shown for MV= 0.1 as the
black continuous lines in each panel. Note that below M = MV, the
response becomes negative, and is truncated in Equation 7. The
modification of the nonlinearity by Delboeuf (1873) that keeps R
positive, which is given by R = loge(1 + M/M V)Vsee Equation 9Vis
shown for M V= 0.1 as the red continuous lines in each panel. Lastly,
a series of functions of the form R = loge(1 + [M/M V]n ])1/nVsee
Equation 10Vare shown as the blue continuous lines for MV= 0.1.
From left to right n = 1.3, 2, 4, 10 and 100. As n increases, the
transition at MV= 0.1 becomes increasingly abrupt (or hard). The
lower panel is simply a semi-logarithmic version of the upper panel.
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each observation interval of a trial, a logarithmically
compressed neural signal deviates from its expected value
R(M) = loge(M/MV) by the addition of Gaussian noise
having a standard deviation, A, independent of R (i.e., we
assume the internal noise after the transducer is constant),
then equal differences in R (and correspondingly equal
fractional increases in M) will be detected with equal
reliability whatever the starting value of R.
This provides a statistical and mechanistic “neo-

Fechnerian” basis for Weber’s Law. By this account,
the Weber fraction w is set by the noise standard
deviation A, which has the same units as R and can be
thought of as the equivalent root-mean-squared (r.m.s.)
variation in the stimulus modulation from observation-
interval to observation-interval, expressed as a fraction of
the mean modulation M. The difference in R between two
intervals with modulations M and (1 + w)M is distributed
with standard deviation ¾2A around its mean of loge(1 + w),
which is approximately w when w is small. Referring this
to the cumulative Gaussian distribution, A is equal to the
Weber fraction w for a criterion of 76% correct 2AFC
performance.

Generalizing Fechner: Hard threshold model

R(M) as defined above decreases smoothly toward zero as
the modulation M decreases to MV. But when M is less than
MV, R becomes negative, and it becomes increasingly
negative without limit as M approaches zero (as indicated
by the black curve of Figure 6). Fechner (1860) dealt with
this unwelcome feature of the log transform by suggesting
that the negative values of R correspond to ‘unconscious
sensations’ that are all introspectively equivalent to one
another, since none are consciously registered. As Fechner’s
contemporaries were quick to point out (e.g., Müller, 1878),
a simple and natural alternative proposal is that the sensory
response R simply remains zero for all M G MV. With this
assumption, Fechner’s log transform is truncated, replacing
the negative values by zero (i.e., the lower-most blue line in
Figure 6). The threshold modulation for eliciting a nonzero
response, MV, divides the response-modulation function into
two regions. Below MVthe response is zero, above MVit is
positive and logarithmically compressed (though, approx-
imately linear just above threshold where M is not much
greater than MV):

R ¼ f0 for M e MV
flogeðM=MVÞ for M 9 MV; ð6Þ

or equivalently,

R ¼ max½0; logeðM=MVÞ�: ð7Þ

Just as the log transform provides a Fechnerian basis for
Weber’s Law, the threshold nonlinearity atMVin Equation 7

provides a Fechnerian basis for the dipper. All subthreshold
modulations M U MV yield the same (zero) response, so
pedestal and signal modulations that by themselves produce
zero response can combine to produce a modulation that is
discriminable from the (zero) response generated by the
pedestal alone.
With the assumption introduced above, that the

response R is contaminated by additive Gaussian internal
noise of fixed variance, Equation 7 predicts performance
in our experiments fairly well. Figure 7 shows the data for
observer HES (replotted from the center panel of Figure 1)
and the solid lines show the performance contours
predicted by the model, and fitted with MVand A as free
parameters, estimated iteratively by using MATLAB’s
fminsearch function (based on the Nelder-Mead algo-
rithm) to minimize the mean squared error of prediction in
loge(M). On each iteration, Equation 7 was used to
evaluate the mean response, Rp for each experimental
pedestal modulation, Mp (assuming the trial value for MV);
the mean signal-plus-pedestal response required for
criterion discrimination performance was then obtained
as Rcrit = Rp + ¾2Azcrit, where zcrit is the standard normal
deviate corresponding to the criterion percent correct,
respectively 0.253, 0.674 and 1.282 for 60%, 75% and
90% correct responses. Equation 7 was inverted to
determine the total modulation of signal and pedestal
Mcrit needed for the response Rcrit, and then the required
signal modulation Ms was obtained as Ms = Mcrit j Mp.
Comparable fits were obtained for the other two observers,

AS and GBH. The dippers predicted by this hard-threshold
model tend to be a little deeper than ones observed, and the
predicted psychometric functions with weak pedestals are
slightly steeper than observed, as reflected in the tight
spacing of the contours for different performance levels. But
the transition from steep psychometric functions with weak
pedestals to shallower ones with large pedestals is well

Figure 7. Data obtained in the no-noise condition (from Figure 1)
for observer HES. Solid lines through the data are the best fitting
curves from the hard-threshold model of Equation 7. Details of
fitting are provided in the text.
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predicted. The free parameters for the predictions of Figure 7
are MV= 0.0075, and A = 0.118.

Generalizing Fechner: Small-signal linearity

In Fechner’s time the dipper was neither experimentally
recognized nor theoretically anticipated, but it was clear
that Weber’s Law had to be modified to accommodate
small background stimulus magnitudes, since the simple
formulation $M = wM implies discriminative capacity that
improves without limit as background magnitude is
decreased, contrary to observation. For many discrim-
ination tasks, where no dipper is observed, a modified
form of Weber’s Law applies: the detectable stimulus
increment has a progressive, linear relation to the
combination of background stimulus magnitude M and a
constant MVto which it is added:

$M ¼ wðM þMVÞ: ð8Þ

In this formulation, MVis no longer the stimulus associated
with zero response. In early discussions of intensity
discrimination (Delboeuf, 1873), MVwas regarded as the
equivalent intensity of an effective background stimulus
or ‘intrinsic light,’ always present and added to any
external stimulus.
Delboeuf (1873) proposed an amendment to Fechner’s

logarithmic formula to make it consistent with this ‘linear
generalization’ (Luce, 1959) of Weber’s Law. This he did
by simply substituting (M + MV) for M in Fechner’s
logarithmic formula, yielding:

RðMÞ ¼ loge½ðM þMVÞ=MV�
¼ loge½1þM=MV�: ð9Þ

The red curves in both panels of Figure 6 depict this
relation. As can be seen, zero response to zero stimulus is
still implied, but there is no sub-threshold dead zone.

Further generalization to incorporate intermediate
(soft threshold) cases

The hard threshold of Equation 7 and the small-signal-
linearity of Equation 9 can both be subsumed within a
‘soft threshold’ class of models that allow the gradient
dR/dM to increase with various degrees of smoothness in
the near-threshold range:

R ¼ logef½1þ ðM=MVÞn�1=ng
¼ loge½1þ ðM=MVÞn�=n: ð10Þ

Here the new parameter, n adjusts the “hardness” of the
threshold while MVno longer necessarily corresponds to
intrinsic light. Equations 7, 9 and 10 are asymptotically

equivalent. The family of curves plotted with blue lines in
Figure 6 show R as a function of M using Equation 10, for
different values of the parameter n.

Relation to other non-linear transducer models

The three components of the models introduced here are
also found in standard non-linear transducer models of the
dipper effect (e.g., Foley & Legge, 1981; Nachmias &
Sansbury, 1974; Wichmann, 1999): (i) a non-linear relation
between stimulus modulation and some internal response, R;
(ii) fixed internal noise added to R; and (iii) a decision
mechanism. The shape of the predicted TvC function is
strongly determined by the form of the response function
provided the noise that limits the observers’ behavior does
not precede the nonlinearity (Lasley & Cohn, 1981; Peterson
& Birdsall, 1953) and the dipper is typically modeled, as it is
here, by assuming a response nonlinearity that is accelerative
in the region of MV. In Equation 10, just as in Equation 7,
MVis in that sense the “threshold” modulation, even though
in Equation 10, a stimulus less than MVcan elicit a response,
and may be detectable without a pedestal if w G 1.

The response function and performance contours:
How hard a threshold?

The two noted shortcomings of the predictions of Figure 7
can be alleviated by assuming a less than ideally-hard
threshold through the appropriate choice of n in Equation 10.
Softening the assumed threshold nonlinearity in Equation 10
rounds off and slightly elevates the bottom of the dipper, and
also increases the predicted separation of the performance
contours when the pedestal is sub-threshold or absent. With
no pedestal, and small M, the contour spacing in a
logarithmic plot is reduced when n is high, since the more
accelerated the response function, the less is the change in
stimulus modulation needed for a criterion change in
response. But for pedestal modulations M d MV, where
Weber’s Law applies (at least asymptotically) for any n, the
signal modulation must increase the natural log of the total
modulation by ¾2Azcrit, making the contour spacing wider
and independent of n.
Equation 10 was used to fit the data for all subjects for

the conditions where there was no external noise (assum-
ing internal additive noise as before). All three parameters
(MV, A and n) were varied iteratively for a best (least-
squares) fit. The best fitting values of n were strikingly
high (8, 7, and 5 for HES, AS and GBH, respectively),
implying a very abrupt “threshold” nonlinearity. The large
values of n that were required to fit the data illustrate the
common failure of energy detectors (n = 2) to fit data
of the sort we obtained (Wichmann, 1999). A value of
n = 2 generates predictions that are obviously inaccurate
(0.14 r.m.s. error in log10 modulation) in two respects: the
dipper is clearly too shallow, and the spread between high
and low criteria when no pedestal is present is too wide.
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The exponents and fitting errors for the different
subjects don’t differ significantly, and on the basis of the
pooled data the most likely exponent is about 6. But any
value greater than about 3 gives a reasonably good fit to
the data.

Data obtained with external noise added

A goal of these experiments was to analyze the detection
process by investigating the ability of noise components of
a range of different temporal frequencies to interfere with
detection. To incorporate the effects of noise in our model,
we assume that flicker is encoded as an energy-related
quantity. Thus, information about the frequency and phase
of the flicker is lost. Our limited ability in temporal-
frequency discrimination (Mandler & Makous, 1984)
supports this scenarioVat least for relatively high fre-
quencies, which appear as what Roufs and Blommaert
(1981) call ‘agitation’ (as opposed to the luminance
‘swell’ visible at lower modulation frequencies).
Instead of deriving the flicker energy E from the

amplitudes of the 200 Fourier components of the stimulus,
it can be obtained directly as the sum of the squares of the
time-varying excursion in relative luminance:

$Lt=Lave ¼ ðLt j LaveÞ=Lave; ð11Þ

which, by Parseval’s Theorem, is proportional to the sum
of squares of the Fourier component amplitudes. Thus in
the absence of external noise, E is proportional to the
square of the signal amplitude, which is half the square of
the modulation depth M in Equations 7, 9 and 10. Those
equations can therefore be restated in terms of E/EVinstead
of M/MV, with E = M2/2 and the exponent n replaced by
n/2, so that the best fitting exponent of n = 6 becomes
n = 3 thus:

R ¼ logeð½1þ ðE=EVÞ3�1=3Þ: ð12Þ

Whichever way the equation is expressed, the modu-
lations are squared before the mean or sum is taken, and
the sum is then subjected (approximately, in the near-
threshold range, E U EV) to a power-law (in this case a
cubic) transform. But precise squaring of the deviations
before integration is not critical to the predictions of
energy-detection schemes, so long as the model prevents
cancellation of positive and negative deviations. The
energy detector is in this sense representative of a family
of ‘rectified transient’ detectors. When only external noise
has to be considered, all detectors that base decisions on a
monotonic function of energy perform equivalently
(Lasley & Cohn, 1981; Peterson & Birdsall, 1953) and
are effectively energy detectors. But if significant noise is

added after the non-linearity the exponent in Equation 12
becomes critical. As noted above, linearity with energy
(an exponent of 2 in Equation 10, or 1 in Equation 12)
does not yield visually acceptable fits; linearity with
modulation (halving the exponent) is even worse, predicting
(in the absence of external noise) no dipper at all; but an
energy detector with cubic response growth (Equation 12)
gives a good account of our results without external noise.
We consider next whether the energy-cubed model can
predict performance with external noise as well.

Simulation methods

Thresholds in noise were estimated by simulating
individual trials. The total noise energy E on any trial,
expressed as a multiple of the expected energy of each
noise component, is a sample from the chi-square
distribution with the degrees of freedom equal to the
number of independent noise components (e.g., 200 for
the no-notch noise). When a signal or pedestal is present,
the flicker energy is a sample from the non-central chi-
square distribution, where the non-centrality parameter is
the energy due to the sum of pedestal and signal. For each
simulated presentation, the stimulus energy was generated
by a random draw from the appropriate distribution, and
the resulting response was obtained from Equation 12.
Independent Gaussian internal noise of standard deviation
A was then added to the responses for each of the two
presentations in a simulated 2AFC trial, and the decision
was counted as correct if the response to the signal
presentation was greater than to the no-signal presenta-
tion. We adopted the values for MVand A that best fit the
no-noise data for each subject, and a threshold hardness
exponent n = 3 in accordance with Equation 12.
Simulations were run on a range of test modulations
spanning the full range of the psychometric function, with
10000 simulated trials per test modulation per pedestal,
and the test modulations required for criterion perfor-
mance were estimated by interpolation. For observers
GBH, HES and AS, the best-fitting values of MVwere
0.0165, 0.0081 and 0.0226 respectively, and the best-
fitting values of A were 0.1761, 0.2314 and 0.1961.

The critical band

Predictions for thresholds in noise depend on the
bandwidth over which the noise energy is integrated.
The simplest energy detector, where all noise frequencies
are weighted equally, is implausible at the outset, since
the highest frequencies in the 100-Hz noise band are
invisible at our mean luminances, and although possibly
present in neural responses (Hawken, Shapley, & Grosof,
1996; Lee, Sun, & Zucchini, 2007; Shady, MacLeod, &
Fisher, 2004), are unlikely to contribute much masking.
Moreover, the calculated performance assuming full
sensitivity to all noise frequencies was vastly inferior to
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what we observed. This failure of prediction can be
corrected by supposing that the energy computation is
preceded by considerable filtering of the temporal lumi-
nance waveform, with a filter frequency response either
completely determined by the temporal CSF or perhaps (if
the signal is not completely unknown) also influenced by
proximity to the signal frequency. This general structure
(filter followed by rectification) is inherited from prior
models, notably those of Goris et al. (2008), Rashbass
(1970), and Roufs and Blommaert (1981).
For the model, we adopted a parametrically specified

smooth passband shape, with a peak at the signal
frequency (10 Hz) and adjustable width. A linear temporal
filter was assumed, multiplying the effective modulation at
frequency f by an attenuation factor:

Aðf Þ ¼ ½ð f=10Þexpð1j f=10Þ�N: ð13Þ
The parameter N is the exponent of the rising low-

frequency part of the modulation sensitivity function. The
high frequency cutoff is also steeper for large N, so
increasing N makes the passband narrower, preserving full
transmission at 10 Hz. The bandwidth-narrowing expo-
nent N was determined iteratively, with a complete
simulation run for each iteration.
Values for N between 1 and 2 gave a good account

of the data (Figure 3 shows the model predictions for
N = 1.4, with a root mean square prediction error of 0.116).
Themain features of the data are captured in the predictions

shown in Figure 3, and the deviations from prediction are not
very consistent across subjects. Appropriate choice of N
yields good estimates of the overall amount of masking for
the notch noises as well as for the broadband noise. The
rightward shift of the dipper in the external noise conditions
is also predicted (perhaps over-predicted) by the model,
because threshold is set by total noise at the output, and the
contribution of external noise to this total is greater for weak
pedestals, where the gradient of the function relating energy
to output (Equation 12) is steep. The required passband of
the early filter is quite broad, ranging from about 3 to 25 Hz
at half-height. This is quite comparable with the width of the
temporal modulation sensitivity function, although the peak
and width of that function vary considerably with the
conditions of observation (Kelly, 1977; Robson, 1966). The
filter bandwidth is, however, narrower than the bandwidth at
the retinal output, which exceeds the psychophysical detec-
tion bandwidth (Lee et al., 2007). Evidently, most if not all of
the visible noise is effective in reducing sensitivity to the test
signal, as if the observer’s decision is based on the total
visibility-weighted flicker energy integrated over frequency.

Internal luminance noise

To provide an account of Weber’s Law for flicker
discrimination (pedestal-aided detection) we have
assumed that internal noise is added to the neural
representation of flicker after the nonlinear transform of

Equation 10. This is equivalent to assuming in the Weber
region that the internal noise before the transducer grows
according to eM. But internal noise may also be introduced
in the form of random fluctuations in signals representing
luminanceVnoise present in the input to the stages
responsible for rectification and compressive nonlinearity.
Although Figure 3 shows that such noise need not be
invoked to provide an approximate account of the
detection thresholds, it is expected a priori and indeed
provides an important functional justification for threshold
nonlinearity, as the nonlinearity would be helpful in
rejecting small inputs that are likely to be due to internal
noise at the input to the nonlinear stage (Morgan, Chubb,
& Solomon, 2008; Simoncelli & Adelson, 1996).
The addition of small amounts of internal luminance

noise does improve the hard threshold model, by appro-
priately increasing the range of uncertain vision (the
separation of the performance contours) when the pedestal
is absent or sub-threshold, thereby correcting one of the
failings of that model seen in Figure 3. But too much
internal luminance noise tends to obliterate the dipper, just
as external noise does.

Summary

Psychometric functions relating the percentage of
correct responses to the depth of modulation of a 10-Hz
sinusoidally flickering stimulus were measured in standard
two-alternative forced-choice experiments under various
conditions of external noise. Our results are broadly
inconsistent with uncertainty reduction and off-frequency
looking explanations of the dipper effect and with a strict
energy detector. Instead, they suggest that the dipper
effect reflects some form of nonlinear transducer function
within a single channel or mechanism. We have devel-
oped a specific non-linear transducer (starting with
Fechner’s early insight) that economically accounts for
the entirety of our data set, with and without noise.
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